Microbiota Intestinal e Sistema Nervoso Central: explorando o eixo cérebro e intestino

Autores

DOI:

https://doi.org/10.34024/rnc.2022.v30.12129

Palavras-chave:

microbiota, microbiota intestinal, microbioma intestinal, cognição, sistema nervoso central

Resumo

Introdução. Estudos correlacionam a comunicação bidirecional entre microbiota intestinal e sistema nervoso central associado a transtorno cognitivos e neurodegenarativos e sintomas intestinais. Objetivo. Identificar a relação entre microbiota intestinal e o cérebro. Método. Foi conduzida uma busca sistemática nas bases de dados Pubmed e Bireme. Resultados. A comunicação entre o cérebro e a microbiota intestinal se dá pela via colinérgica aferente e eferente; pelo sistema HPA onde o estímulo ocorre por via aferente, e por inibição de histonas pela via eferente. A microbiota intestinal e sua composição estão conectadas ao desenvolvimento de patologias do sistema nervoso central e sua prevenção. Estas patologias têm relação com o eixo cérebro-intestino e a liberação de metabólitos que afetam diretamente a permeabilidade do intestino. Conclusão. Alterações na mucosa interferem na liberação de hormônios e de neurotransmissores gastrointestinais, assim estudos observam melhora cognitiva a partir da suplementação de pré e Probióticos.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Giau VV, Wu SY, Jamerlan A, An SAA, Kim SY, Hulme J. Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients 2018;10:1-18. https://doi.org/10.3390/nu10111765

Berding K, Long-Smith CM, Carbia C, Bastiaanssen TFS, Wouw MVD, Wiley N, et al. A specific dietary fibre supplementation improves cognitive performance—an exploratory randomised, placebo-controlled, crossover study. Psychopharmacology 2020;238:149-63. https://doi.org/10.1007/s00213-020-05665-y

Komanduri M, Gondalia S, Scholey A, Stough C. The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology 2019;236:1559-71. https://doi.org/10.1007/s00213-019-05231-1

Mckenna CF, Salvador AF, Hughes RL, Scaroni SE, Alamilla RA, Askow AT, et al. Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: a randomized control trial. Am J Physiol Endocrinol Metabol 2021;320:E900-13. https://doi.org/10.1152/ajpendo.00574.2020

Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clin Interv Aging 2018;13:1497-511. https://doi.org/10.2147/CIA.S139163

Ibrahim A, Ali RAR, Manaf MRA, Ahmad N, Tajurruddin FW, Qin WZ, et al. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: a randomised controlled trial. Plos One 2020;15:e0244680-97. https://doi.org/10.1371/journal.pone.0244680

Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci-Switz 2018;12:1-9. https://doi.org/10.3389/fnins.2018.00049

Kim C, Cha L, Sim M, Jung S, Chun WY, Baik HW, et al. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol Series A 2020;76:32-40. https://doi.org/10.1093/gerona/glaa090

Heyck M, Ibarra A. Microbiota and memory: A symbiotic therapy to counter cognitive decline? Brain Circ 2019;5:124-9. https://doi.org/10.4103/bc.bc_34_19

Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, et al. The progress of gut microbiome research related to brain disorders. J Neuroinflam 2020;17:1-20. https://doi.org/10.1186/s12974-020-1705-z

Galvão TF, Pansani TSA, Harrad D. Principais Itens Para Relatar Revisões Sistemáticas e Meta-análises: A Recomendação PRISMA. Epidemiol Serv Saúde 2018;24:335-42. https://doi.org/10.5123/S1679-49742015000200017

Steenbergen L, Sellaro R, Hemert SV, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactitivy to sad mood. Brain Behav Immun Elsevier 2015;48:258-64. ]https://doi.org/10.1016/j.bbi.2015.04.003

Akbari E, Asemi Z, Kakhaki RD, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer's Disease: A Randomized, Double-Blind and Controlled Trial. Front Aging Neurosci 2016;8:256. https://doi.org/10.3389/fnagi.2016.00256

Kobayashi Y, Kuhara T, Oki M, Xiao JZ. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: A randomized, double-blind, placebo-controlled trial. Benef Microbes 2019;10:511-20. https://doi.org/10.3920/BM2018.0170

Silk DBA, Davis A, Vulevic J, Tzortzis G, Gibson GR. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 2009;29:508-18. https://doi.org/10.1111/j.13652036.2008.03911.x

Azpiroz F, Dubray C, Bernalier-Donadille A, Cardot JM, Accarino A, Serra J, et al. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterol Motil 2017;29:1-8. https://doi.org/10.1111/nmo.12911

Nagpal R, Neth BJ, Wang S, Craft SC, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in associationwith Alzheimer's disease markers in subjects with mild cognitive impairment. E Bio Medicine 2019;47:529-42. https://doi.org/10.1016/j.ebiom.2019.08.032

Grimaldi R, Gibson GR, Vulevic J, Giallourou N, Castro-Mejía JL, Hansen LH, et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018;6:133-46. https://doi.org/10.1186/s40168-018-0523-3

Vagnerová K, Vodicka M, Hermanová P, Ergang P, Srutková D, Klusonová P, et al. Interactions Between Gut Microbiota and Acute Restraint Stress in Peripheral Structures of the Hypothalamic–Pituitary–Adrenal Axis and the Intestine of Male Mice. Front Immunol 2019;10:1-10. https://doi.org/10.3389/fimmu.2019.02655

Nishimura Y, Fukuda Y, Okonogi T, Yoshikawa S, Karasuyama H, Osakabe N, et al. Dual real-time in vivo monitoring system of the brain-gut axis. Biochem Bioph Res Co 2020;pii:S0006-291X(20)30159-5. https://doi.org/10.1016/j.bbrc.2020.01.090

Erny D, Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015;18:965-77. https://doi.org/10.1038/nn.4030

Guyton AC, Hall JE. Tratado de Fisiologia Médica. 4ª.ed. Elsevier; 2006. https://www.saraiva.com.br/guyton-hall-tratado-de-fisiologia-medica-11-ed-2006-1390966/p

Ventura ALM, Abreu PA, Freitas RCC, Sathler PC, Loureiro N, Castro HC. Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Rev Psiq Clín 2010;37:66-72. https://doi.org/10.1590/S0101-60832010000200007

Gareau MG, Jury J, Perdue MH. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol 2007;293:G198-203. https://doi.org/10.1152/ajpgi.00392.2006

Diling C, Longkai Q, Yinrui G, Yadi L, Xiaocui T, Xiangxiang Z, et al. CircNF1-419 improves the gut microbiome structure and function in AD-like mice. Aging 2020;12:260-87. https://doi.org/10.18632/aging.102614

Juruena MF, Cleare AJ, Pariantea CM. The hypothalamic pituitary adrenal axis, glucocorticoid receptor function and relevance to depression. Rev Bras Pisquiatr 2004;26:189-201. https://doi.org/10.1590/s1516-44462004000300009

Merola B, Longobardi S, Colao A, Somma Cd, Ferone D, Rossi E, et al. Hypothalamic-Pituitary –Adrenal Axis in Neuropsychiatric Disorders. Ann NY Acad Sci 1994;263-70. https://doi.org/10.1111/j.1749-6632.2012.06569.x

Rieder R, Wisniewski PJ, Alderman BL, Campbell SC. Microbes and mental health: A review. Brain Behav Immun 2017;66:9-17. https://doi.org/10.1016/j.bbi.2017.01.016

Li Y, Schnabl K, Gabler S, Willershauser M, Reber J, Karlas A, et al. Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell 2018;175:1561-74. https://doi.org/10.1016/j.cell.2018.10.016

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol 2014;121:91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

Syrovatkina V, Alegre KO, Dey R, Huang X. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol 2016;428:3850-68. https://doi.org/10.1016/j.jmb.2016.08.002

Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson's disease? Pharmacol Ther 2013;140:34-52. https://doi.org/10.1016/j.pharmthera.2013.05.010

Galland L. The gut microbiome and the brain. J Med Food 2014;17:1261-72. https://doi.org/10.1146/annurev-pharmtox-011112-140216

Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs). Acta Biochim Pol 2019;66:1-12. https://doi.org/10.18388/abp.2018_2648

Dumitrescu L, Popescu-Olaru I, Cozma L, Tulbă D, Hinescu MEH, Ceafalan LCC. Oxidative Stress and the Microbiota-Gut-Brain Axis. Oxid Med Cell Longev 2018;2018:2406594. https://doi.org/10.1155/2018/2406594

Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The Central Nervous System and the Gut Microbiome. Cell 2016;167:915-32. https://doi.org/10.1016/j.cell.2016.10.027

Martin CR, Mayer EA. Gut-Brain Axis and Behavior. Nestle Nutr Inst Workshop Ser 2017;88:45-53. https://doi.org/10.1159/000461732

Sommer F, Bäckhed F. The gut microbiota - masters of host development and physiology. Nat Rev Microbiol 2013;11:227-38. https://doi.org/10.1038/nrmicro2974

Yang Y, Tian J, Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sciences 2018;194:111-9. https://doi.org/10.1016/j.lfs.2017.12.027

Kraneveld AD, Szklany K, Theije CGM, Garssen, J. Gut-to-Brain Axis in Autism Spectrum Disorders: Central Role for the Microbiome. Int Rev Neurobiol 2016;131:263-87. https://doi.org/10.1016/bs.irn.2016.09.001

Berding K, Donovan SM. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nut Rev 2016;74:723-36. https://doi.org/10.1093/nutrit/nuw048

Morgun A, Dzutsev A, Dong X, Greer RL, Sexton DJ, Ravel J, et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 2015;64:1732-43. https://doi.org/10.1136/gutjnl-2014-308820

Meijer K, Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Wolters Kluwer Health 2010;13:715-21. https://doi.org/10.1097/MCO.0b013e32833eebe5

Sanctuary MR, Kain JN, Chen SY, Kalanetra K, Lemay DG, Rose DR, et al. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PloS ONE 2019;14: e0210064-e0210.094. https://doi.org/10.1371/journal.pone

Park C, Brietzke E, Rosenblat JD, Musial N, Zuckerman H, Ragguett RM, et al. Probiotics for the treatment of depressive symptons: Na anti-inflammatory mechanism? Elsevier 2018;74:115-24. https://doi.org/10.1016/j.bbi.2018.07.006

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici KD. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006;112:389-404. https://doi.org/10.1007/s00401-006-0127-z

Amemori K, Amemori S, Gibson DJ, Graybil AM. Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation. Neuron 2018;99:829-41. https://doi.org/10.1016/j.neuron.2018.07.022

Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep 2017;7:13537. https://doi.org/10.1038/s41598-017-13601-y

Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson's disease. Mov Disord 2015;30:1351-260. https://doi.org/10.1002/mds.26307

Li W, Wu X, Hu X, Wang T, Liang S, Duan Y, et al. Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features. Sci China Life Sci 2017;60:1223-33. https://doi.org/10.1007/s11427-016-9001-4

Frank MG, Fonken LK, Watkins LR, Maier SF, Lowry C. Could probiotics be used to mitigate neuroinflammation? ACS Chem Neurosci 2018;10:13-5. https://doi.org/10.1021/acschemneuro.8b00386

Downloads

Publicado

2022-04-25

Como Citar

Lopes Silva, J. C., Campos, S. Évelin D. C., Santana, M. L. C. de, Costa, A. dos S., & Francelino, J. O. (2022). Microbiota Intestinal e Sistema Nervoso Central: explorando o eixo cérebro e intestino. Revista Neurociências, 30, 1–29. https://doi.org/10.34024/rnc.2022.v30.12129

Edição

Seção

Artigos de Revisão
Recebido: 2021-05-12
Aceito: 2022-03-22
Publicado: 2022-04-25