Correlação entre Hiperglicemia e Células do SNC, com Enfoque na Atividade Glial

Autores

  • Amanda de Souza Mello Farmacêutica, Mestranda do Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Porto Alegre-RS, Brasil.
  • André Quincozes Santos Farmacêutico Bioquímico, Doutor em Bioquímica pela Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre-RS, Brasil.
  • Cláudia Funchal Farmacêutica Bioquímica, Doutora em Bioquímica pela Universidade Federal do Rio Grande do Sul (UFRGS), Docente do Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista do IPA, Porto Alegre-RS, Brasil.

DOI:

https://doi.org/10.34024/rnc.2012.v20.8284

Palavras-chave:

Hiperglicemia, Astrócitos, Glutamato, Excitoxicidade, Estresse Oxidativo

Resumo

Introdução. Entre os mecanismos biológicos que originam o qua­dro hiperglicêmico a predominância é do diabetes melittus (DM). O DM representa um grupo de desordens metabólicas caracterizadas por hiperglicemia crônica que ocasiona severas alterações celulares e teci­duais. Objetivo. O presente trabalho analisou através de revisão da literatura o comportamento de células gliais expostas a elevadas con­centrações de glicose, similares às observadas no DM. Método. Foi realizada uma revisão literária através de artigos científicos das bases de dados Pubmed, Science Direct, Scopus e Scielo. Resultados. Foram selecionados artigos e livros entre 1988 e 2009 que discutiam hiper­glicemia, sistema nervoso central e que relacionavam hiperglicemia e células gliais. Conclusão. A hiperglicemia crônica proporcionada pelo DM pode influenciar de maneira danosa o metabolismo cerebral exercendo ações sobre a atividade glial. Podendo afetar a sobrevivência neuronal através da excitotoxicidade glutamatérgica e da produção de espécies reativas de oxigênio (ERO) e de espécies reativas de nitro­gênio (ERN) que geram como consequência o processo de neuroin­flamação. Tal processo inflamatório pode resultar em dano e morte neural caracterizando um processo neurodegerativo.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Referências

Grassiolli S. Contribuição da função da célula beta pancreática na manutenção da normoglicemia em ratos obesos (Tese). Maringá: UEM, 2004, 162p.

Praticò D. Alzheimer’s disease and oxygen radicals: new insights. Biochem Pharmacol 2002;63:563-7. http://dx.doi.org/10.1016/S0006-2952(01)00919-4

Nardin P. Avaliação dos parâmetros bioquímicos e morfológicos em células gliais expostas ao um meio com alto conteúdo de glicose. (Dissertação). Porto Alegre: UFRGS, 2006, 53p.

Gusatti M. Modelagem matemática do acoplamento entre atividade elétrica cerebral, metabolismo e hemodinâmica. (Dissertação). Florianópolis: UFSC, 2006, 01p.

Jacques-Silva MC, Gemelli T, Carvalho CAS, Funchal C. Papel dos astrócitos no sistema nervoso central. Ciência em Movimento 2007;18:61-9.

Young JK, Garvey JS, Huang PC. Glial immunoreactivity for metallothionein in the rat brain. Glia 1991;4:602-10. http://dx.doi.org/10.1002/glia.440040607

Fellin T, Carmignoto G. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. Physiology in press 2004;559:3-15.

Lent R. Cem bilhões de neurônios: conceitos fundamentais de neurociência. São Paulo: Atheneu, 2001, 714p.

Markiewicz I, Lukomska B. The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol 2006;66:343-58.

Maragaskis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol 2001;58:365-70. http://dx.doi.org/10.1001/archneur.58.3.365

Maragakis NJ, Rothstein JD. Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 2004; 15:461-73. http://dx.doi.org/10.1016/j.nbd.2003.12.007

Puskas F, Grocott HP, White WD, Mathew JP, Newman M, Bar-Yosef S. Intraoperative hyperglycemia and cognitive decline after CABG. Ann Thorac Surg 2007;84:1467-73. http://dx.doi.org/10.1016/j.athoracsur.2007.06.023

Choi DW. Calcium-mediated neurotoxity: relationship to specific channel types and role in ischemic damage. Trends in Neurosci 1988A;11:465-9. http://dx.doi.org/10.1016/0166-2236(88)90200-7

Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988B;1:623-34. http://dx.doi.org/10.1016/0896-6273(88)90162-6

Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nature 2009;10:1-14.

Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra, A. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 1996;5976-79.

Emerit J. Neurodegenerative disease and oxidative stress. Biomed Pharmacother 2004;58:39-46. http://dx.doi.org/10.1016/j.biopha.2003.11.004

Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, Barja G. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complexI and oxidative DNA damage in rat brain. J Bioenerg 2005;37:83-90. http://dx.doi.org/10.1007/s10863-005-4131-0

Kimelberg H K, Noremberg M D. Astrocytes. Scientific Am 1989;260:44-52. http://dx.doi.org/10.1038/scientificamerican0489-66

Rakic P. Elusive radial glial cells: historical and evolutionsary perspective. Glia 2003;43:19-32. http://dx.doi.org/10.1002/glia.10244

Nedeegaard M, Ranson B, Goldman SA. New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 2003;26:523-30. http://dx.doi.org/10.1016/j.tins.2003.08.008

Chenn A. A Top-NOTCH Way to Make Astrocytes, Dev Cell 2009;1:1-2.

Anderson CM, swanson RA Astrocyte glutamate transport: review of properties, regulation and physiological functions. Glia 2000;32:1-14. http://dx.doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W

http://dx.doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.3.CO;2-N

Waaagepetersen HS, Sonnewald U, Schoesboe A. Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes: functional implications. Neuroscientist 2003;9:398-403. http://dx.doi.org/10.1177/1073858403254006

Lefrançois T, Peschannski M, Tardy M. Neuritic ougrowth associated with astroglial phenotypic changers induced by antisense glial fibrillary acidic protein (GFAP) mRNA in jured neuron-astrocyte cocultures. J Neurosci 1997;17:4121-8.

Menet V, Ribota M G, Chauvet N, Crian M J, Colucciciguyon E, Privat A. Inactivation of the glial fibrillary acidic protein gene, but not of vimentin, improves neuronal surnical and neurite growth by modifying adhesion molecule espression. J Neurosci 2001;16:6147-58.

Eng LF, Ghirnikar RS. GFAP and astrogliosis. Brain Pathol 1994;4:229-37. http://dx.doi.org/10.1111/j.1750639.1994.tb00838.x

Clark EJ, Allan V. Intermediate filaments: vimentin moves in. Curr Biol 2002;12:596-8. http://dx.doi.org/10.1016/S0960-9822(02)01102-8

Weinstein DE, Shelannski ML, Liem RK. Suppression by antisense mRNA demostrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol 1991;112:1205-13. http://dx.doi.org/10.1083/jcb.112.6.1205

Alexanian AR, Burgurg JR. Neuronal survival activity of S100B beteba is enhacend by calcineurin inhibitors and requires activation of nf-kappab. FASEB J 1999;13:1611-20.

Rothermundt M, Peter M, Prehn HM, Arolt V. S100b in brain damage and neurodegeneration. Microsc Res Tech 2003;60:614-32. http://dx.doi.org/10.1002/jemt.10303

Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia 2008;12:198-204.

Li Y, Wang J, Sheng, J G, Lui L, Barger S W, Jones R A, et al. S100B Increases of b-amyloid precursor protein and its encoding mRNA in rat neuronal cultures. J Neurochem 1998;71:1421-8. http://dx.doi.org/10.1046/j.14714159.1998.71041421.x

Tramontina F, Tramontina AC, Souza DF, Leite MC, Gottfried C, Souza DO, et al. Glutamate uptake is stimulated by extracellular S100B in hippocampal astrocytes. Cell Mol Neurobiol 2006;26:81-6.

Nardin P, Tortorelli L, Quincozes-Santos A, Almeida LM, Leite MC, Thomazi AP, et al. S100B Secretion in Acute Brain Slices: Modulation by Extracellular Levels of Ca(2+) and K (+). Neurochem Res 2009;15:1-2.

Tramontina F, Leite MC, Gonçalves D, Tramontina AC, Souza DF, Frizzo JK, et al. High glutamate decreases S100B secretion by a mechanism dependent on the glutamate transporter. Neurochem Res 2006;31:815-20. http://dx.doi.org/10.1007/s11064-006-9085-z

Gerlach R, Demel G, Konig HG, Gross U, Raabe A, Seifert V, et al. Active secretion of s100b from astrocytes during metabolic stress. Neuroscience 2006;141:1697-701. http://dx.doi.org/10.1016/j.neuroscience.2006.05.008

Ozawa S, Kamyia H, Tsuzuki, K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 1998;54:581-618. http://dx.doi.org/10.1016/S0301-0082(97)00085-3

Funchal C, Rosa AM, Wajner M, Wofchuk SE, Pureur RP. Reduction of Glutamate Uptake into Cerebral Cortex of Developing Rats by the Branched-Chain Alpha-Keto Acids Accumulating in Maple Syrup Urine Disease. Neurochem Res 2004;29:747-53. http://dx.doi.org/10.1023/B:NERE.0000018846.66943.30

Nardin P, Tramontina F, Leite MC, Tramontina AC, Quincozes-Santos A, Almeida LMV, et al. S100B content and secretion decrease in astrocytes cultured inhigh-glucose medium, Neurochem Int 2007;50:774-82. http://dx.doi.org/10.1016/j.neuint.2007.01.013

Droge W. Free radicals in the physiological control of cell function Physiol Rev 2002;82:47-95.

Kanner BI. Glutamate transporters from brain: A novel neurotransmitter transport family. FEBS Lett 1993; 325:95-9. http://dx.doi.org/10.1016/0014-5793(93)81421-U

Millan MH, Chapman AG, Maldrum BS. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res 1993;14:139-48. http://dx.doi.org/10.1016/0920-1211(93)90018-3

Amara SG, Fontana CK. Excitatory amino acid transporters: Keeping up with glutamate. Neurochem Int 2002;41:313-8. http://dx.doi.org/10.1016/S0197-0186(02)00018-9

Dickie BGM. Neurotoxic and neurotrophic effects of chronic N-methyl- D-aspartate exposure upon mesencephalic dopaminergic neurons inorganotypic culture. Neuroscience 1996;72:731-41. http://dx.doi.org/10.1016/0306-4522(95)00611-7

Ottersen OP, Storm-Mathisen J. Glutamate. in: Björklund A, Hökfelt T, Handbook of chemical neuroanatomy. Amsterdam: Elsevier, 2000, p.18.

Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999;81:163-221. http://dx.doi.org/10.1016/S0163-7258(98)00042-4

Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995;38:357-66. http://dx.doi.org/10.1002/ana.410380304

Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman S, Lin TS, et al. Mitochondrial Production of Reactive Oxygen Species in Cortical-Neurons Following Exposure to N-Methyl-D-Aspartate. J Neurosci 1995; 15:6377-88.

Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. Involvement of glutamate and reactive oxygen species in methyl mercury neurotoxicity. Braz J Med Biol Res 2007;40:285-91. http://dx.doi.org/10.1590/S0100879X2007000300001

Halliwell B, Gutteridge JM. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 1991;128:347-52. http://dx.doi.org/10.1016/0014-5793(81)80114-7

Halliwell B. Free radicals and antioxidants: A personal view. Nutr Rev 1994;52:253-65. http://dx.doi.org/10.1111/j.1753-4887.1994.tb01453.x

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease.Int J Biochem Cell Biol 2007;39:44-84. http://dx.doi.org/10.1016/j.biocel.2006.07.001

Halliwell B, Gutteridge JMC. Free radical in biology and medicine. 2 ed. New York: Oxford University Press; 1989, 543p.

Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 2005;118:3695-703. http://dx.doi.org/10.1242/jcs.02507

Hoozemans JJM, Veerhuis R, Rozemuller JM, Eikelenboon P. Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci 2005;24:157-65. http://dx.doi.org/10.1016/j.ijdevneu.2005.11.001

Balashov KE, Comabella M, Ohashi, T, Khoury, SJ, Weiner, HL Defective regulation of IFNgamma and IL-12 by endogenous IL-10 in progressive MS. Neurology 2000;55:582-3.

Sulzer D. Neurodegeneration and Neuroprotection in Parkinson Disease. NeuroRx: The Journal of the American Socity for Experimental NeuroTherapeutics 2004;1:139-54.

Lucchinetti C, Rodriguez M. Multiple sclerosis. N Engl J Med 2000;343:938-52. http://dx.doi.org/10.1056/NEJM200009283431307

Bjartmar C, Trapp BD. Axonal degeneration and progessive neurologic disability in ultiple sclerosis. Neurotox Res 2003;5:157-64. http://dx.doi.org/10.1007/BF03033380

Hickey W. Leucocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 1999;11:125-37. http://dx.doi.org/10.1006/smim.1999.0168

Karpus WJ, Ransohoff RM Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis. J Immunol 1998;191:2667-71.

Huang D. Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev 2000;177:52-67. http://dx.doi.org/10.1034/j.1600-065X.2000.17709.x

Bacon KB, Harrison JK. Chemokines and their receptors in neurobiology: perspectives in physiology and homeostasis. J Neuroimmunol 2000;104:92-7. http://dx.doi.org/10.1016/S0165-5728(99)00266-0

Downloads

Publicado

2012-03-31

Como Citar

Mello, A. de S., Santos, A. Q., & Funchal, C. (2012). Correlação entre Hiperglicemia e Células do SNC, com Enfoque na Atividade Glial. Revista Neurociências, 20(2), 294–301. https://doi.org/10.34024/rnc.2012.v20.8284

Edição

Seção

Revisão de Literatura
Recebido: 2019-02-20
Publicado: 2012-03-31

Artigos mais lidos pelo mesmo(s) autor(es)