Aprendizado e Memória de Trabalho em Camundongos sob Diferentes Condições de Iluminação

  • Shayenne Elizianne Ramos Bióloga, Mestre em Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, Brasil.
  • Luis David Solis Murgas Veterinário, Doutor em Zootecnia, Universidade Federal de Lavras, Lavras- -MG, Brasil.
  • Monica Rodrigues Ferreira Veterinária, Doutora em Ciência Animal, Universidade Federal de Lavras, Lavras-MG, Brasil
  • Carlos Alberto Mourao Junior Médico, Doutor em Endocrinologia, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, Brasil.
Palavras-chave: Ritmos Circadianos, Memória de Trabalho, Cognição

Resumo

Objetivo. Investigar o efeito de diferentes ciclos claro/escuro e da in­tensidade luminosa durante testes comportamentais de aprendizagem e memória de trabalho em camundongos suíços. Método. Cinquenta e sete camundongos foram mantidos em um biotério nas seguintes condições: 12:12h de ciclo claro/escuro (LD), luz constante (LL), ou escuridão constante (DD). Os animais foram, então, testados no la­birinto de Lashley e no teste de reconhecimento de objetos sob 500 ou 0 lux de iluminação, resultando em seis grupos (LD-500, LD-0, LL-500, LL-0, DD-500 e DD-0). Resultados. Não houve diferenças significativas entre as condições de luz ou escuridão, ou na iluminação entre 500 e 0 lux nos testes. Animais mantidos em constante escuridão e testados a 0 lux (DD-0) tiveram a aprendizagem e a memória de trabalho prejudicadas, como demonstrado pelo aprendizado lento no labirinto Lashley, e ausência do reconhecimento de objetos na tarefa de reconhecimento de objetos. Conclusão. O escuro contínuo duran­te todo o experimento afetou o aprendizado e a memória de trabalho em camundongos.

Métricas

Carregando métricas...

Referências

Cardinali DP. Melatonin.l A mammalian pineal hormone. Endocr Rev 1981;2(3):327-46. http://dx.doi.org/10.1210/edrv-2-3-327

Young MW. Life’s 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem Sci 2000;25(12):601-6. http://dx.doi.org/10.1016/S0968-0004(00)01695-9

Chaudhury D, Colwell CS. Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res 2002;133(1):95-108. http://dx.doi.org/10.1016/S0166-4328(01)00471-5

Gerstner JR, Yin JC. Circadian rhythms and memory formation. Nat Rev Neurosci 2010;11(8):577-88. http://dx.doi.org/10.1038/nrn2881

Devan BD, Goad EH, Petri HL, Antoniadis EA, Hong NS, Ko CH, et al. Circadian phase-shifted rats show normal acquisition but impaired longterm retention of place information in the water task. Neurobiol Learn Mem 2001;75(1):51-62. http://dx.doi.org/10.1006/nlme.1999.3957

Walton JC, Chen Z, Weil ZM, Pyter LM, Travers JB, Nelson RJ. Photoperiod- mediated impairment of long-term potention and learning and memory in male white-footed mice. Neuroscience 2011;175:127-32. http://dx.doi.org/10.1016/j.neuroscience.2010.12.004

Cao XJ, Wang M, Chen WH, Zhu DM, She JQ, Ruan DY. Effects of chronic administration of melatonin on spatial learning ability and long-term potentiation in lead-exposed and control rats. Biomed Environ Sci 2009;22(1):70-5. http://dx.doi.org/10.1016/S0895-3988(09)60025-8

Manda K, Anzai K, Kumari S, Bhatia AL. Melatonin attenuates radiationinduced learning deficit and brain oxidative stress in mice. Acta Neurobiol Exp (Wars) 2007;67(1):63-70.

Soto-Moyano R, Burgos H, Flores F, Valladares L, Sierralta W, Fernandez V, et al. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats. Pharmacol Biochem Behav 2006;85(2):408-14. http://dx.doi.org/10.1016/j.pbb.2006.09.009

Yoo DY, Kim W, Lee CH, Shin BN, Nam SM, Choi JH, et al. Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. J Pineal Res 2012;52(1):21-8. http://dx.doi.org/10.1111/j.1600-079X.2011.00912.x

Canal MM, Mohammed NM, Rodriguez JJ. Early programming of astrocyte organization in the mouse suprachiasmatic nuclei by light. Chronobiol Int2009;26(8):1545-58. http://dx.doi.org/10.3109/07420520903398542

Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial nonmatching-to-sample learning task to study ‘recognition memory’. Nat Protoc 2006;1(3):1306-11. http://dx.doi.org/10.1038/nprot.2006.205

Hughes RN. Neotic preferences in laboratory rodents: issues, assessment and substrates. Neurosci Biobehav Rev 2007;31(3):441-64. http://dx.doi.org/10.1016/j.neubiorev.2006.11.004

Boehm GW, Sherman GF, Hoplight BJ, 2nd, Hyde LA, Bradway DM, Galaburda AM, et al. Learning in year-old female autoimmune BXSB mice. Physiol Behav 1998;64(1):75-82. http://dx.doi.org/10.1016/S0031-9384(98)000274

National Research Council. Guide for the care and use of laboratory animals. Washington: National Academy Press; 1996. 125p.

Lashley KS. Brain mechanisms and intelligence: a quantitative study of injuries to the brain. New York: Dover Publications; 1963. 186 p.

Neto SP, Carneiro BT, Valentinuzzi VS, Araujo JF. Dissociation of the circadian rhythm of locomotor activity in a 22 h light-dark cycle impairs passive avoidance but not object recognition memory in rats. Physiol Behav 2008; 94(3):523-7. http://dx.doi.org/10.1016/j.physbeh.2008.03.013

Bert B, Fink H, Huston JP, Voits M. Fischer 344 and wistar rats differ in anxiety and habituation but not in water maze performance. Neurobiol Learn Mem 2002;78(1):11-22. http://dx.doi.org/10.1006/nlme.2001.4040

Talaei SA, Sheibani V, Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus 2010;20(3):447-55.

Arendash GW, Sengstock GJ, Sanberg PR, Kem WR. Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 1995;674(2):252-9. http://dx.doi.org/10.1016/0006-8993(94)01449-R

Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 2000;23:649-711. http://dx.doi.org/10.1146/annurev.neuro.23.1.649

Rosenstein RE, Cardinali DP. Melatonin increases in vivo GABA accumulation in rat hypothalamus, cerebellum, cerebral cortex and pineal gland. Brain Res 1986;398(2):403-6. http://dx.doi.org/10.1016/0006-8993(86)91505-2

Izquierdo I, Izquierdo LA, Barros DM, Mello e Souza T, de Souza MM, Quevedo J, et al. Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav Pharmacol 1998; 9(56):421-7. http://dx.doi.org/10.1097/00008877-199809000-00005

Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev Reprod 1998;3(1):13-22. http://dx.doi.org/10.1530/ror.0.0030013

Bass EW, Jr., Means LW, McMillen BA. Buspirone impairs performance of a three-choice working memory water escape task in rats. Brain Res Bull 1992;28(3):455-61. http://dx.doi.org/10.1016/0361-9230(92)90047-2

Porter RJ, Lunn BS, O’Brien JT. Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly. Psychol Med 2003;33(1):41-9. http://dx.doi.org/10.1017/S0033291702006906

Buhot MC, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med 2000;32(3):210-21. http://dx.doi.org/10.3109/07853890008998828

He WB, Zhang JL, Hu JF, Zhang Y, Machida T, Chen NH. Effects of glucocorticoids on age-related impairments of hippocampal structure and function in mice. Cell Mol Neurobiol 2008;28(2):277-91. http://dx.doi.org/10.1007/s10571-007-9180-y

Fischman AJ, Kastin AJ, Graf MV, Moldow RL. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 1988;47(4):309-16. http://dx.doi.org/10.1159/000124930

Publicado
2013-09-30
Como Citar
Ramos, S. E., Murgas, L. D. S., Ferreira, M. R., & Mourao Junior, C. A. (2013). Aprendizado e Memória de Trabalho em Camundongos sob Diferentes Condições de Iluminação. Revista Neurociências, 21(3), 349-355. https://doi.org/10.34024/rnc.2013.v21.8158
Seção
Artigos Originais