Aprendizado e Memória de Trabalho em Camundongos sob Diferentes Condições de Iluminação
DOI:
https://doi.org/10.4181/RNC.2013.21.834.7pPalavras-chave:
Ritmos Circadianos, Memória de Trabalho, CogniçãoResumo
Objetivo. Investigar o efeito de diferentes ciclos claro/escuro e da intensidade luminosa durante testes comportamentais de aprendizagem e memória de trabalho em camundongos suíços. Método. Cinquenta e sete camundongos foram mantidos em um biotério nas seguintes condições: 12:12h de ciclo claro/escuro (LD), luz constante (LL), ou escuridão constante (DD). Os animais foram, então, testados no labirinto de Lashley e no teste de reconhecimento de objetos sob 500 ou 0 lux de iluminação, resultando em seis grupos (LD-500, LD-0, LL-500, LL-0, DD-500 e DD-0). Resultados. Não houve diferenças significativas entre as condições de luz ou escuridão, ou na iluminação entre 500 e 0 lux nos testes. Animais mantidos em constante escuridão e testados a 0 lux (DD-0) tiveram a aprendizagem e a memória de trabalho prejudicadas, como demonstrado pelo aprendizado lento no labirinto Lashley, e ausência do reconhecimento de objetos na tarefa de reconhecimento de objetos. Conclusão. O escuro contínuo durante todo o experimento afetou o aprendizado e a memória de trabalho em camundongos.
Métricas
Referências
Cardinali DP. Melatonin.l A mammalian pineal hormone. Endocr Rev 1981;2(3):327-46. http://dx.doi.org/10.1210/edrv-2-3-327
Young MW. Life’s 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem Sci 2000;25(12):601-6. http://dx.doi.org/10.1016/S0968-0004(00)01695-9
Chaudhury D, Colwell CS. Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res 2002;133(1):95-108. http://dx.doi.org/10.1016/S0166-4328(01)00471-5
Gerstner JR, Yin JC. Circadian rhythms and memory formation. Nat Rev Neurosci 2010;11(8):577-88. http://dx.doi.org/10.1038/nrn2881
Devan BD, Goad EH, Petri HL, Antoniadis EA, Hong NS, Ko CH, et al. Circadian phase-shifted rats show normal acquisition but impaired longterm retention of place information in the water task. Neurobiol Learn Mem 2001;75(1):51-62. http://dx.doi.org/10.1006/nlme.1999.3957
Walton JC, Chen Z, Weil ZM, Pyter LM, Travers JB, Nelson RJ. Photoperiod- mediated impairment of long-term potention and learning and memory in male white-footed mice. Neuroscience 2011;175:127-32. http://dx.doi.org/10.1016/j.neuroscience.2010.12.004
Cao XJ, Wang M, Chen WH, Zhu DM, She JQ, Ruan DY. Effects of chronic administration of melatonin on spatial learning ability and long-term potentiation in lead-exposed and control rats. Biomed Environ Sci 2009;22(1):70-5. http://dx.doi.org/10.1016/S0895-3988(09)60025-8
Manda K, Anzai K, Kumari S, Bhatia AL. Melatonin attenuates radiationinduced learning deficit and brain oxidative stress in mice. Acta Neurobiol Exp (Wars) 2007;67(1):63-70.
Soto-Moyano R, Burgos H, Flores F, Valladares L, Sierralta W, Fernandez V, et al. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats. Pharmacol Biochem Behav 2006;85(2):408-14. http://dx.doi.org/10.1016/j.pbb.2006.09.009
Yoo DY, Kim W, Lee CH, Shin BN, Nam SM, Choi JH, et al. Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. J Pineal Res 2012;52(1):21-8. http://dx.doi.org/10.1111/j.1600-079X.2011.00912.x
Canal MM, Mohammed NM, Rodriguez JJ. Early programming of astrocyte organization in the mouse suprachiasmatic nuclei by light. Chronobiol Int2009;26(8):1545-58. http://dx.doi.org/10.3109/07420520903398542
Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial nonmatching-to-sample learning task to study ‘recognition memory’. Nat Protoc 2006;1(3):1306-11. http://dx.doi.org/10.1038/nprot.2006.205
Hughes RN. Neotic preferences in laboratory rodents: issues, assessment and substrates. Neurosci Biobehav Rev 2007;31(3):441-64. http://dx.doi.org/10.1016/j.neubiorev.2006.11.004
Boehm GW, Sherman GF, Hoplight BJ, 2nd, Hyde LA, Bradway DM, Galaburda AM, et al. Learning in year-old female autoimmune BXSB mice. Physiol Behav 1998;64(1):75-82. http://dx.doi.org/10.1016/S0031-9384(98)000274
National Research Council. Guide for the care and use of laboratory animals. Washington: National Academy Press; 1996. 125p.
Lashley KS. Brain mechanisms and intelligence: a quantitative study of injuries to the brain. New York: Dover Publications; 1963. 186 p.
Neto SP, Carneiro BT, Valentinuzzi VS, Araujo JF. Dissociation of the circadian rhythm of locomotor activity in a 22 h light-dark cycle impairs passive avoidance but not object recognition memory in rats. Physiol Behav 2008; 94(3):523-7. http://dx.doi.org/10.1016/j.physbeh.2008.03.013
Bert B, Fink H, Huston JP, Voits M. Fischer 344 and wistar rats differ in anxiety and habituation but not in water maze performance. Neurobiol Learn Mem 2002;78(1):11-22. http://dx.doi.org/10.1006/nlme.2001.4040
Talaei SA, Sheibani V, Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus 2010;20(3):447-55.
Arendash GW, Sengstock GJ, Sanberg PR, Kem WR. Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 1995;674(2):252-9. http://dx.doi.org/10.1016/0006-8993(94)01449-R
Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 2000;23:649-711. http://dx.doi.org/10.1146/annurev.neuro.23.1.649
Rosenstein RE, Cardinali DP. Melatonin increases in vivo GABA accumulation in rat hypothalamus, cerebellum, cerebral cortex and pineal gland. Brain Res 1986;398(2):403-6. http://dx.doi.org/10.1016/0006-8993(86)91505-2
Izquierdo I, Izquierdo LA, Barros DM, Mello e Souza T, de Souza MM, Quevedo J, et al. Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav Pharmacol 1998; 9(56):421-7. http://dx.doi.org/10.1097/00008877-199809000-00005
Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev Reprod 1998;3(1):13-22. http://dx.doi.org/10.1530/ror.0.0030013
Bass EW, Jr., Means LW, McMillen BA. Buspirone impairs performance of a three-choice working memory water escape task in rats. Brain Res Bull 1992;28(3):455-61. http://dx.doi.org/10.1016/0361-9230(92)90047-2
Porter RJ, Lunn BS, O’Brien JT. Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly. Psychol Med 2003;33(1):41-9. http://dx.doi.org/10.1017/S0033291702006906
Buhot MC, Martin S, Segu L. Role of serotonin in memory impairment. Ann Med 2000;32(3):210-21. http://dx.doi.org/10.3109/07853890008998828
He WB, Zhang JL, Hu JF, Zhang Y, Machida T, Chen NH. Effects of glucocorticoids on age-related impairments of hippocampal structure and function in mice. Cell Mol Neurobiol 2008;28(2):277-91. http://dx.doi.org/10.1007/s10571-007-9180-y
Fischman AJ, Kastin AJ, Graf MV, Moldow RL. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 1988;47(4):309-16. http://dx.doi.org/10.1159/000124930
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2013 Shayenne Elizianne Ramos, Luis David Solis Murgas, Monica Rodrigues Ferreira, Carlos Alberto Mourao Junior

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
